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From Local Approximation to a

G 1 Global Representation

CUdric G~rot, Dominique Attali, and Annick Montanvert

Abstract. To represent a complex surface, it is useful to describe it as
a set of simple parametric primitives such as quadrics. But if one wants
to use few primitives, these have to be smoothly blended. To define this
blending, we propose to describe the initial global surface with charts. The
blending surfaces result from a convex combination of primitives whose
weights are defined on open sets of R2 given by the charts. We have
established the properties that the weight functions must satisfy to obtain
a G1 representation of the global surface, and we have constructed such
functions.

§1. Introduction

The abundance of high quality volumetric image data and new performant seg-
mentation methods for multidimensional image data make 3-D objects ready
for analysis. Volumetric objects are basically represented by a binary voxel
representation or by a triangulation of the surface. Because they are based
on huge lists of voxels or surface elements, they are not efficient for capturing
global and local shape features with a view to characterizing shape proper-
ties. The spline surfaces can be very useful, but become difficult to use for
topologically arbitrary surfaces modeling because they require a rectangular
parameterization. On the contrary, any surface can be approximated using
quadric surface patches as in [2]. While they lead to a good shape descrip-
tion, the quadric patches do not define an overall continuous surface. Ideally,
a surface representation for image analysis should allow us to represent con-
tinuously any complex surface with few parameters, and to extract shape
properties as well.

We propose to represent a surface with charts. A chart is composed
of a patch U lying on the surface and a homeomorphism of U onto a 2D-
domain. This notion has already been used, but essentially for image synthesis.
Thus, in [14], it allows texture mapping on a triangulated surface which is too
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complex to be described by only one chart. It is also used in [9] to design a
surface with B-splines on any topological polyhedra, and in [15] to generalize
the B-splines for constructing surfaces from irregular control meshes that can
be embedded in the plane. Then, Eck et al. [5] use this notion to design a
subdivision mesh from any triangular mesh.

We use it for image analysis because it allows to unfold a complex surface
(for instance the surface of a brain). It is then an appropriate tool to extract
surface features. Before using it, we first have to construct it. To do so, we
begin by representing the surface by means of a set of simple surfaces called
primitives (quadrics for instance) which approach it locally. (We currently
study new processes to extract primitives from 3D objects). As mentioned
above, the primitives do not define a globally continuous surface in general.
So they have to be smoothly blended. This paper is focused on a solution to
the blending problem.

Several different approaches to surface blending have been suggested.
Firstly to fill a hole on a surface, one can interpolate a position and tangency
conditions network [18,7,16,4], or construct a rational patch to fill a polygonal
hole [10,8]. Our blending problem is not to fill a hole. But our approach solve
this problem too. Secondly, to blend two surfaces, one can apply a rolling-ball
algorithm [1,3,6]. But one cannot blend more than three surfaces at the same
time. One can also meld isopotentials if the primitives are implicitly defined,
[17,11,12]. But this seems to be a too restrictive condition. Our approach
differs from these methods in that we blend any number of primitives at the
same time, provided they can be parameterized.

This paper begins with mathematical definitions which are necessary to
define our representation with charts. Then we present our approach for
surface blending. Next we illustrate the different steps of our approach with
some examples. Finally, we conclude with future work.

§2. Surface Representation with Charts

We begin with some mathematical definitions coming from differential geom-
etry [13].

Definition 1. A n-dimensional manifold is a topological space such that each
point admits a neighborhood homeomorphic to R'.

Definition 2. A chart (U, 0) is composed of an open set U of an n-manifold
and a homeomorphism 0 of U onto an open set of R'•.

Definition 3. Two charts (Ui, Oi) and (Uj, Oj) agree with each other if their

transition function

¢ij= V o 071: oi(Ui n Uj) -* Vj(Uj n Ui)

is a diffeomorphism.

Definition 4. Such a collection of maps charting all of the manifold is called
an atlas.
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Remark. Every 2-dimensional manifold admits an atlas.

To give an atlas describing a surface is to give a representation of it with
charts. This representation possesses two main advantages. Firstly, it com-
bines local information with global information (0- 1 is a local parameteriza-
tion of the surface). That means one can work locally on the surface without
undesirable consequences on the global surface because the atlas maintains
this consistency by definition. Secondly, an atlas allows to translate problems
given on any 2-dimensional manifold into problems given on 1R2.

§3. Smooth Blend

We have given the mathematical definition of the representation with charts.
We now discuss how to use it to construct a G1 global representation of a
surface. Our aim is to represent a 2-dimensional manifold V by means of a
set of simple surfaces called primitives (quadrics for instance) which approach
V locally. To be more precise, we assume a family {Ui} of open sets on V the
union of which covers V and such that each Uj is approximated by a primitive
Pi in such a way that there is a bijection bi of Uj onto Pj: Pi = bi(Ui).
The blend we want to construct between the primitives Pi must be a smooth
surface S which overlaps a closed set of each Pi, called pure area and defined
by bi(U \ Uji Uj). So, to be able to construct a smooth blend, the primitives
must overlap sufficiently (see §4.1).

The blend is defined as a convex combination of the primitives Pi which
approximate overlapping open sets U2. The surface S is defined by an atlas
and is a representation of V.

Hypotheses.

e We suppose that Pi are 2-dimensional manifolds parametrized by pi,
homeomorphisms which are C1 on an open set £1, of ]R2 : P2 = Pi(Qi).

e Let Qkj be the open set of 7l defined by £lij = pi (bi(Ui n Uj)).

e We suppose that there exist some bijective transition functions ij :
Qjj - Qjj, such that Vkj o Wik = Wij. In particular, fjii = Qi and
Vii is the identity. We write P(N) for the set of subsets of IN, and define
for all i

Ti :i-* P(N)
m H{j E IN: m E Qij}

* Let the weight functions ai be defined on Qj and satisfying the following:

Property 1. Convexity
la) Vi, VmGE j,0 < a(m) • 1

lb) Vi,Vm E R,EjE-i(m)ao(9ij(m)) = 1.

Property 2. Regularity
2a) ai (m) = 1 if pi (m) belongs to the pure area,
2b) ai(m) = 0 if m does not belong to Si.
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* We define for all i

'i :'Qi -_4 R3

m F-4 E aj(,ij(m))pj('Pij(m))"

jElZ(m)

Remark. This definition is consistent: oj (Vij(M)) = Wi (M).

Proposition. With these hypotheses we get:

"• If oi is bijective, Pij is C' and ai is C0, then S is a 2-dimensional manifold
for which an atlas is {(W7

1
-(pi), W 1

)}.

"* If wij is C1 and ai is C', then S is described by a Cl-atlas (S is then a
G1-surface).

Property 2a guarantees that Soi(in) = pi(m) if pi(m) belongs to the pure

area. Properties 2a and 2b can be inconsistent with each other if the pure
area is not strictly included in pi(Qj). But in this case, another primitive can
be introduced, which overlaps locally Pi.

On one hand, our representation is more efficient if few primitives are
used. On the other hand, S is closer to V when more primitives are used.

So the appropriate balance must be found with regard to these needs. But,
if the blend is not defined specifically to perform the approximation of V by
S, the approximation error is on the same order of magnitude as that due to
the local approximation by each primitive. This last property is due to the
convexity property followed by the weight functions.

To construct weight functions which satisfy the convexity properties, we
first construct functions /3i satisfying the following

Property 3.

3a) Vi, Vm E Qj, 0 1< 3ji(m) < 1,

3b) Vi, Vm c Qi,ZjEli(m())j(POij(in()) # 0,

3c) 3i (m) = 1 if pi (m) belongs to the pure area,

3d) /3i(m) = 0 if m does not belong to 92i.

Then, the weight functions ai defined by the following expression have
all the desired properties:

/3i(m)

where Wij is a C 1 transition function.

§4. Applications

In this paper, we detail the construction of the open sets Qj, the weight

functions aj, and the functions Woi. Further work will focus on the construction
of domains Ui and the transition functions oij.



On a G' Global Representation 113
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Fig. 1. Functions b(p) and 0(p, 0).

4.1. Weight functions

As shown in §3, to construct satisfactory weight functions, we first construct
function /i satisfying Property 3. We suppose the open set Q is a disc whose
radius is R. Let r be the radius of the smaller disc having the same center as
Q and including the set of points {m E 1 : p(m) belongs to the pure area}.
To simplify the notations, we call this set of points the pure area too. Then
we can give a cylindric definition of 0, where t is a shape parameter:

,3(p, 9) = b(p)

with
(1if P <r,

P(p) ifr < p!< r +t,
b(p) = L(p) ifr + t < p5 <R- t,

1 -P(R +r-p) ifR-t<p<R,
10 ifR < p,

where L(x) = Dx+E, P(x) = Ax 2 +Bx+C and D R-t_ E = 1-(R+r)D
R-r-t' 2 '

A B = -2Ar, C = 1- Ar 2 -Br.

Fig. 2 shows the weight function a after normalization, in a case where P
is combined with five other primitives.

In order that the small disc whose radius is r better fits the pure area,
two modifications can be easily implemented. Firstly, we can define the small
disc containing the pure area with different center than the center of Q. '3
will have the same definition but with R depending on 9. Secondly, we can
use ellipses rather than discs.

The parameter t, which belongs to (0, 0.5), controls the nonlinear part of
b. The smaller t, the smaller this part is. To avoid a final surface which is
visually too sharp, t must be neither too small nor too large.

The size of the pure area also plays an important role in the surface
smoothness. As shown in Fig. 4, if the pure area is too large, then the transi-
tions between the primitives are too sharp in regards with the resolution of a
visualization process. On the contrary, a pure area which is too small causes
smooth transitions, but the shape of primitives is lost. In the example shown
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Fig. 2. Function a for a fixed 0 and for all 9.

zoo
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open set Q,
where the paraboloid
z=(x- k,) (y- k,) • .. ./ ]o

is defined

open set D i
where the paraboloidz=k-xy • -Y 2

is defined

Fig. 3. Blending paraboloids: an example satisfying the hypotheses (r - 0.71R).

oi 4?0i 4

Fig. 4. Blendings with too large (r = 0.85R) and too small (r 0.07R) pure areas.

in Fig. 3, we have implemented a case where the pure area is half the area of
Q. This balance gives a good solution.

We have constructed satisfactory weight functions. To apply our repre-
sentation we must define the functions Ii, bijective and C' transition functions
oioj, and check that (pi is bijective to be sure that S is a G' surface.
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4.2. A simple case

We first apply our representation in the case where the surface V to be repre-
sented can be described by v(x, y) = [x, y, f(x, y)], (x, y) c D C R 2 : a land
surface in topography for example.

We suppose that a set of open discs f2i is defined by any local approx-
imation strategy, and parameterizations pi(X, y) = [x, y, pf (x, Y)], (x, y) E

Pi are given such that D C Ui Qi and each pi is a C1 approximation of
{v(x, y) : (x, y) c i nD1.

It is easy to check if a point (x, y) is inside a disc flj, and so to define
Zi(x, y). Besides, the transition functions Wij are, in this case, the identity,
which is C1 and bijective. Finally, the functions Wi constructed by convex
combinations of such pi are bijective. So, the surface S described by the atlas
{(y-l(f),-l)} is G 1.

Fig. 3 shows an example of this first case. We deal with six open discs.
One of them, £li, is centered on the origin. The others are centered on the
vertices of a pentagon which encircles Pi. The primitives are paraboloids.
The central one is defined by z = k - x2 - y 2, and the others by z = (x -
k!) 2 + (y - k?)2 where k* are constant.

This example displays the blend between two primitives quite similar
locally around their parts to blend (a central and a peripheral), and between

two dissimilar primitives (two peripherals). The surface is smooth even if
adjacent primitives are strongly different from each other.

4.3. A more general case

Most of the surfaces to be represented cannot be described by [x, y, Vz (x, y)].
To deal with any surface V, we require a triangular mesh which is a first

approximation of V. To simplify the notations, we name this mesh V too. We
define on it a set of domains Ui. Each Ui is a set of vertices, edges and faces
of V. It is isomorphic to an open disc, and well approximated by a primitive
(a plane in Fig. 7).

In this case, we do not give an analytic expression to the functions pi,
Wij and the open set 4ij, but they are defined on a finite set of points. They
are described by links between vertices of different meshes (see Fig. 5). For

instance, we construct a mesh Qi lying on R 2, using the bijective harmonic
map presented in [5], on Ui, see Fig. 6. Therefore, each vertex u of Ui is linked
to a vertex w of Pi. Because of these links, -i, Wij and £lij can be defined on
the vertices of £i as follows:

For every vertex u of V, we construct l(u), the list of the vertices
linked to u. Each of these vertices lies on a different Qj. l(u) contains
only one vertex w if w belongs to a pure area. Let w be a vertex of an
open set £i. Let u be the vertex of Ui (and so V) linked to it. For all
i, if one of the vertices of 1(u), w', belongs to Qj, then Ti(w) includes
j, w belongs to 4ij and Wij(w) = w'; or else w does not belong to
N4i.
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/s_/ P(,

Fig. 5. Notation in the general case.

The functions /3/ are calculated as in §4.1, and thanks to 1i, we calculate
a2 on the vertices of .

In the same way, we construct a mesh Pi, which is in bijection with Ui and
whose vertices lie on the primitive which approximate U2. Thanks to the links
between the vertices of Ui and Qi, we define the links between the vertices of
£1, and P2. These links define the paramatrization pi on the vertices of •i.

We then construct a mesh S whose vertices are calculated by •i defined
on the vertices of gnr as in §3.

Assuming there exist C1 functions apij and P which interpolat e values
set on the vertices of i., and satisfy the hypotheses given in §3, the vertices
of S lie on a G1 surface.

Remark. Because we do not give an analytic expression for PT and t ij, we
have to store the meshes of i and Pi. In future work, we will either have to
give simple expressions for those functions, or decrease the size of the meshes.

§5. Conclusion
The representation with charts can be used to construct a useful surface model.
But, before applying it to real data, we still have two crucial steps: the defi-
nition of the domains U, and the definition of transition functions. Then we
will apply it to image analysis problems such as registration, surface feature
extraction, texture mapping or animation. More precisely, we will begin with
the visualization of S by a mesh hierarchy which offers different levels of detail.
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Fig. 6. An open set Qj.

Fig. 7. The meshed primitives Pi and the mesh S.
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